10=-16(t)^2+(30)(t)+9

Simple and best practice solution for 10=-16(t)^2+(30)(t)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=-16(t)^2+(30)(t)+9 equation:



10=-16(t)^2+(30)(t)+9
We move all terms to the left:
10-(-16(t)^2+(30)(t)+9)=0
We get rid of parentheses
16t^2-30t-9+10=0
We add all the numbers together, and all the variables
16t^2-30t+1=0
a = 16; b = -30; c = +1;
Δ = b2-4ac
Δ = -302-4·16·1
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{209}}{2*16}=\frac{30-2\sqrt{209}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{209}}{2*16}=\frac{30+2\sqrt{209}}{32} $

See similar equations:

| j/−2j​ +7=−12 | | M2=4x-26 | | X3-x2-6x=0 | | 2=3n−1 | | -5(3n+5=16 | | 2h-12+3h+3=2(-8+3h) | | -(b-16)=15b | | 6+11x=-21+x | | d/4−2=2 | | 6x+x+x-5-2=8+2x+x | | 1-10n=1 | | (3x-24)+2x+(4x+11)=180 | | d4− 2=2 | | 115=-4-7n | | 2x-3=12-123 | | 4a-3a=20+7 | | 8(x+7=6(x-4) | | 6x+x+x-5-2=8x+x | | -3.2+v/5=15.7 | | 12+x=x4 | | 20x+19=7x-15 | | -12.6x-4.9x=-154x=154 | | -9=4u+3 | | 2x/10=2 | | M14=3x+1 | | 10-7a=66 | | 5(h+1)=6(h-2) | | X2+4=(x+1)(x+3) | | x/7−14=-12 | | 5(4-x)=20-5x | | 82=9v+10 | | 4+15h+15=19+15h |

Equations solver categories